Tuesday, September 23, 2014



SISTEM PENGAPIAN SEPEDA MOTOR

FUNGSI SISTEM PENGAPIAN
Sistem pengapian berfungsi menghasilkan percikan bunga api pada busi pada saat yang tepat untuk membakar campuran bahan bakar dan udara di dalam silinder. Seperti yang kita ketahui bahwa system pengapian konvensional menggunakan gerakan mekanik kontak platina untuk menghubung dan memutus arus primer, maka kontak platina mudah sekali aus dan memerlukan penyetelan/perbaikan dan penggantian setiap periode tertentu. Hal ini merupakan kelemahan mencolok dari sistem pengapian konvensional.
Dalam perkembangannya, ditemukan sistem pengapian elektronik sebagai penyempurna sistem pengapian. Salah satu sistem pengapian elektronik yang populer adalah sistem pengapian CDI (Capacitor Discharge Ignition). Sistem pengapian CDI merupakan system pengapian elektronik yang bekerja dengan memanfaatkan pengisian (charge) dan pengosongan (discharge) muatan kapasitor. Proses pengisian dan pengosongan muatan kapasitor dioperasikan oleh saklar elektronik seperti halnya kontak platina (pada sistem pengapian konvensional).
Sebagai pengganti kontak platina, pada sistem pengapian elektronik digunakan SCR/Silicon Controlled Rectifier (yang disebut Thyristor switch). SCR bekerja berdasarkan sinyal-sinyal listrik, sehingga pada sistem pengapian elektronik didapatkan beberapa keuntungan yaitu :
1)      Keuntungan Mekanik :
a)      Tidak terdapat gerakan mekanik/gesekan antar komponen pada SCR, sehingga tidak terjadi keausan komponen.
b)      Tidak memerlukan perawatan/penyetelan dalam jangka waktu yang pendek seperti pada sistem pengapian konvensional.
c)      Kerja sistem pengapian elektronik stabil (karena tidak ada keausan komponen) sehingga bahan bakar relatif ekonomis karena pembakaran lebih sempurna.
d)     Tidak sensitif terhadap air karena komponen sistem pengapian dapat dikemas kedap air.
2)      Keuntungan Elektrik
a)      Tegangan pengapian cukup besar dan konstan, sehingga pembakaran lebih sempurna dan kendaraan mudah dihidupkan.
b)      Busi menjadi lebih awet karena pembakaran lebih sempurna.
Adapun kekurangan sistem pengapian elektronik adalah :
1)      Apabila terjadi kerusakan terhadap salah satu komponen di dalam unit CDI, berakibat seluruh rangkaian CDI tidak dapat bekerja dan harus diganti satu unit.
2)   Biaya/harga penggantian unit CDI relatif lebih mahal.

Sistem Pengapian Elektronik (CDI) dibagi 2 :
1)      Sistem Pengapian Magnet Elektronik (AC-CDI)
Sumber tegangan didapat dari alternator, sehingga arus yang digunakan merupakan arus bolak-balik (AC)
2)      Sistem Pengapian Baterai Elektronik (DC-CDI)
Sumber tegangan diperoleh dari tegangan baterai (yang disuplay oleh sistem pengisian), sehingga arus yang digunakan merupakan arus searah (DC)

1)    Sistem Pengapian Magnet Elektronik (AC-CDI)
Komponen Sistem Pengapian AC-CDI
a)      Sumber Tegangan, berfungsi sebagai penyedia tegangan yang diperlukan oleh sistem pengapian. Sumber tegangan system pengapian magnet elektronik AC merupakan sumber tegangan AC (Alternating Current), berupa Alternator (Kumparan Pembangkit/stator dan Magnet/rotor). Alternator berfungsi untuk mengubah energi mekanis yang didapatkan dari putaran mesin menjadi tenaga listrik arus bolak-balik (AC). Pada sepeda motor, rotor juga berfungsi sebagai fly wheel.












          Gambar 1. Alternator

b)      Kunci Kontak (Ignition Switch), berfungsi sebagai saklar utama untuk menghubung dan memutus (On-Off) rangkaian pengapian (dan rangkaian kelistrikan lainnya) pada sepeda motor. Kunci kontak untuk pengapian AC merupakan tipe pengendali massa.
1)      Pada posisi OFF dan LOCK, kunci kontak membelokkan tegangan dari sumber tegangan (alternator) yang dibutuhkan oleh sistem pengapian ke massa melalui terminal IG dan E kunci kontak, sehingga sistem pengapian tidak dapat bekerja. Di sisi lain, pada posisi OFF dan LOCK kunci kontak juga memutuskan hubungan tegangan (+) baterai (terminal BAT dan BAT 1) sehingga seluruh system kelistrikan tidak dapat dioperasikan.
2)      Pada posisi ON, kunci kontak memutuskan hubungan terminal IG dan E, sehingga tegangan yang dihasilkan oleh alternator diteruskan ke sistem pengapian. Sistem pengapian dapat dioperasikan, disamping itu hubungan terminal BAT dan BAT 1 terhubung sehingga seluruh system kelistrikan dapat dioperasikan.





 

Gambar 2. Kunci Kontak Pengapian AC-CDI

c)      Koil pengapian (Ignition Coil), berfungsi untuk menaikkan tegangan yang diterima dari sumber tegangan (alternator) menjadi tegangan tinggi yang diperlukan untuk pengapian. Dalam koil pengapian terdapat kumparan primer dan kumparan sekunder yang dililitkan pada tumpukan-tumpukan plat besi tipis. Diameter kawat pada kumparan primer 0,6 – 0,9 mm, dengan jumlah lilitan 200 – 400 kali, sedangkan diameter kawat pada kumparan sekunder 0,05 – 0,08 mm dengan jumlah lilitan sebanyak 2000 – 15.000 kali. Karena perbedaan jumlah gulungan pada kumparan primer dan sekunder tersebut, dengan cara mengalirkan arus listrik secara terputus-putus pada kumparan primer (sehingga pada kumparan primer timbul/hilang kemagnetan secara tiba-tiba), maka kumparan sekunder akan terinduksi sehingga timbul induksi tegangan tinggi sebesar 20.000 volt.




 






Gambar 3. Koil Pengapian

d)     Unit AC-CDI, merupakan serangkaian komponen elektronik yang berfungsi sebagai saklar rangkaian primer pengapian, menghubungkan dan memutuskan arus listrik yang dimanfaatkan untuk melakukan pengisian (charge) dan pengosongan (discharge) muatan kapasitor, kemudian dialirkan melalui kumparan primer koil pengapian untuk menghasilkan arus listrik tegangan tinggi pada kumparan sekunder dengan cara induksi elektromagnet.




 













Gambar 4. Basic Circuit AC-CDI

Prinsip kerja AC-CDI adalah sebagai berikut :
Rectifier bekerja menyearahkan arus AC yang dihasilkan oleh sumber tegangan (alternator) maupun oleh signal generator (pick up coil).
Kapasitor (capacitor) menyimpan energi hasil induksi dari kumparan stator alternator dimana terdapat magnet permanen yang berputar (rotor alternator) di dekat kumparan stator.
Thyristor switch merupakan saklar elektronik yang akan mengosongkan kapasitor yang sudah bermuatan tersebut, sinyal trigger didapatkan dari arus yang dihasilkan oleh pick up coil yang mengalir melalui kaki Gate (G). Akibatnya Thyristor aktif dan menghubungkan kedua terminal kapasitor melalui terhubungnya terminal Anoda (A) dan Katoda (K) pada Thyristor.
Kapasitor akan melepaskan muatannya secara cepat (discharge) melalui kumparan primer koil pengapian (Ignition Coil) untuk menghasilkan induksi pada kumparan primer maupun induksi tegangan tinggi pada kumparan sekunder koil pengapian.
*) Thyristor switch merupakan saklar elektronik yang bekerja lebih cepat daripada kontak platina (saklar mekanik) dan kapasitor mendischarge sangat cepat. Karena itu, tegangan tinggi yang dihasilkan semakin besar karena kumparan sekunder koil pengapian terinduksi dengan cepat, sehingga pijaran api yang dihasilkan pada busi menjadi lebih kuat.

e)      Kumparan Pembangkit Pulsa (Signal generator/Pick up coil), bekerja bersama reluctor sehingga menghasilkan sinyal trigger (pemicu) yang dimanfaatkan oleh Thyristor untuk mendischarge seluruh muatan kapasitor. Pick up coil terdiri dari suatu lilitan kecil yang akan menghasilkan arus listrik AC apabila dilewati oleh perubahan garis gaya magnit yang dilakukan oleh reluctor yang terpasang pada rotor alternator. Prinsip kerja pick up coil dapat dilihat pada gambar di bawah ini.


 















Gambar 5. Prinsip Kerja Pick Up Coil

f)       Busi (Spark Plug), mengeluarkan arus listrik tegangan tinggi menjadi loncatan bunga api melalui elektrodanya. Loncatan bunga api terjadi disebabkan adanya perbedaan tegangan diantara kedua kutup elektroda busi (} 20.000 volt).

Skema Sistem Pengapian Magnet Elektronik (AC-CDI)

 
 

   Gambar 6. Skema Sistem Pengapian AC-CDI


Proses Kerja Sistem Pengapian AC-CDI
a)    Saat Kunci Kontak (Ig. Switch) OFF
Kunci kontak dalam posisi terhubung dengan massa. Arus listrik yang dihasilkan sumber tegangan (Alternator) dibelokkan ke massa melalui kunci kontak, tidak ada arus yang mengalir ke unit CDI sehingga sistem pengapian tidak bekerja dan motor tidak dapat dihidupkan.
b)   Saat Kunci Kontak ON
Hubungan ke massa melalui kunci kontak terputus sehingga arus listrik yang dihasilkan alternator akan mengalir masuk ke sistem pengapian.
Ketika rotor alternator (magnet) berputar, kumparan stator menghasilkan arus listrik Þ disearahkan dioda Þ mengisi kapasitor sehingga muatan kapasitor penuh.
Pada saat yang ditentukan (saat pengapian), arus sinyal dihasilkan oleh signal generator (pick up coil). Arus sinyal pick up coil Þ Gate (G) Thyristor switch dan mengaktifkan Thyristor. Thyristor aktif (kaki Anoda ke Katoda terhubung) dan arus listrik dapat mengalir dari kaki Anoda (A) Þ Katoda (K). Hal ini akan menyebabkan kapasitor terdischarge (dikosongkan muatannya) dengan cepat Þ melalui kumparan primer koil pengapian Þ massa koil pengapian. Pada kumparan primer koil pengapian dihasilkan tegangan induksi sendiri sebesar 200 – 300 V.
Akhirnya pada kumparan sekunder koil pengapian akan timbul induksi tegangan tinggi sebesar ± 20 KVolt Þ disalurkan melalui kabel busi ke busi untuk diubah menjadi pijaran api listrik.

2)    Sistem Pengapian Baterai Elektronik (DC-CDI)
Komponen Sistem Pengapian DC-CDI
a)      Sumber tegangan DC (Direct Current), berupa Baterai yang didukung oleh sistem pengisian (Kumparan Pengisian, Magnet dan Rectifier/Regulator), berfungsi sebagai penyedia tegangan DC yang diperlukan oleh sistem pengapian.


 



Gambar 7. Baterai



b)      Kunci kontak untuk pengapian DC (pengendali positif).
1)      Pada posisi ON, kunci kontak menghubungkan tegangan (+) baterai ke seluruh sistem kelistrikan (termasuk system pengapian) untuk mengoperasikan seluruh sistem kelistrikan yang ada.
2)      Pada posisi OFF dan LOCK, kunci kontak memutuskan hubungan kelistrikan dari sumber tegangan (terminal (+) baterai) yang dibutuhkan oleh seluruh sistem kelistrikan, sehingga seluruh sistem kelistrikan tidak dapat dioperasikan.









 Gambar 8. Kunci Kontak Pengapian DC

c)      Koil pengapian (Ignition Coil), berfungsi untuk menaikkan tegangan yang diterima dari sumber tegangan (alternator) menjadi tegangan tinggi yang diperlukan untuk pengapian. Dalam koil pengapian terdapat kumparan primer dan kumparan sekunder yang dililitkan pada tumpukan-tumpukan plat besi tipis. Diameter kawat pada kumparan primer 0,6 – 0,9 mm, dengan jumlah lilitan 200 – 400 kali, sedangkan diameter kawat pada kumparan sekunder 0,05 – 0,08 mm dengan jumlah lilitan sebanyak 2000 – 15.000 kali.
Karena perbedaan jumlah gulungan pada kumparan primer dan sekunder tersebut, dengan cara mengalirkan arus listrik secara terputus-putus pada kumparan primer (sehingga pada kumparan primer timbul/hilang kemagnetan secara tiba-tiba), maka kumparan sekunder akan terinduksi sehingga timbul induksi tegangan tinggi sebesar } 20.000 volt.










Gambar 9. Koil Pengapian

d)     Unit DC-CDI, merupakan serangkaian komponen elektronik yang berfungsi sebagai saklar rangkaian primer pengapian, menghubungkan dan memutuskan arus listrik yang dimanfaatkan untuk melakukan pengisian (charge) dan pengosongan (discharge) muatan kapasitor, kemudian dialirkan melalui kumparan primer koil pengapian untuk menghasilkan arus listrik tegangan tinggi pada kumparan sekunder dengan cara induksi elektromagnet.















Gambar 10. Basic Circuit DC-CDI

Prinsip kerja DC-CDI adalah sebagai berikut :
DC-DC Conventer merupakan serangkaian komponen elektronik yang menaikkan tegangan sumber (baterai) dan menyearahkannya lagi untuk dialirkan ke kapasitor. Kapasitor (capacitor) menyimpan energi hasil induksi dari DCDC Conventer sampai kapasitas muatannya penuh.
Thyristor switch merupakan saklar elektronik yang akan mengosongkan kapasitor yang sudah bermuatan tersebut, sinyal trigger didapatkan dari arus yang dihasilkan oleh pick up coil yang terlebih dahulu diperkuat di dalam rangkaian penguat sinyal (amplifier), dialirkan ke kaki Gate (G). Akibatnya Thyristor aktif dan menghubungkan kedua terminal kapasitor melalui terhubungnya terminal Anoda (A) dan Katoda (K) pada Thyristor.
Kapasitor akan melepaskan muatannya secara cepat (discharge) melalui kumparan primer koil pengapian (Ignition Coil) untuk menghasilkan induksi pada kumparan primer maupun induksi tegangan tinggi pada kumparan sekunder koil pengapian.
*) Thyristor switch merupakan saklar elektronik yang bekerja lebih cepat daripada kontak platina (saklar mekanik) dan kapasitor mendischarge sangat cepat. Karena itu, tegangan tinggi yang dihasilkan semakin besar karena kumparan sekunder koil pengapian terinduksi dengan cepat, sehingga pijaran api yang dihasilkan pada busi menjadi lebih kuat.
e)      Kumparan Pembangkit Pulsa (Signal generator/Pick up coil), bekerja bersama reluctor sehingga menghasilkan sinyal trigger (pemicu) yang dimanfaatkan oleh Thyristor untuk mendischarge seluruh muatan kapasitor. Pick up coil terdiri dari suatu lilitan kecil yang akan menghasilkan arus listrik AC apabila dilewati oleh perubahan garis gaya magnit yang dilakukan oleh reluctor yang terpasang pada rotor alternator. Prinsip kerja pick up coil dapat dilihat pada gambar di bawah ini.
















Gambar 11. Prinsip Kerja Pick up coil

f)       Busi (Spark Plug), mengeluarkan arus listrik tegangan tinggi menjadi loncatan bunga api melalui elektrodanya. Loncatan bunga api terjadi disebabkan adanya perbedaan tegangan diantara kedua kutup elektroda busi (} 20.000 volt).

Skema Sistem Pengapian Baterai Elektronik (DC-CDI)













   Gambar 12. Skema Sistem Pengapian DC-CDI
Proses Kerja Sistem Pengapian Baterai Elektronik (DC-CDI)
1)   Saat Kunci Kontak OFF
Hubungan sumber tegangan dengan rangkaian sistem pengapian terputus, tidak ada arus yang mengalir sehingga motor tidak dapat dihidupkan.
2)   Saat Kunci Kontak ON
Kunci kontak menghubungkan sumber tegangan ((+) baterai) dengan rangkaian sistem pengapian, sehingga arus listrik dari baterai dapat disalurkan ke unit CDI (DC-DC Conventer).
Ketika rotor alternator (magnet) berputar, reluctor ikut berputar. Pada saat reluctor mulai mencapai lilitan pick up coil, lilitan pick up coil akan menghasilkan sinyal listrik yang dimanfaatkan untuk mengaktifkan Switch Transistor (Tr) pada DC-DC Conventer.
Kumparan primer dan sekunder (Kump.) pada DC-DC Conventer akan bekerja secara induksi menaikkan tegangan sumber Þ disearahkan lagi oleh dioda (D) Þ mengisi kapasitor (C) sehingga muatan kapasitor penuh.
*) Sinyal yang dihasilkan lilitan pick up coil tersebut belum mampu membuka gerbang (Gate) Thyristor switch (SCR) sehingga SCR belum bekerja.
Pada saat yang hampir bersamaan (saat pengapian), arus sinyal yang dihasilkan oleh signal generator (pick up coil) mampu membuka gerbang SCR sehingga SCR menjadi aktif dan membuka hubungan arus listrik dari kaki Anoda (A) Þ Katoda (K).
Hal ini akan menyebabkan kapasitor terdischarge (dikosongkan muatannya) dengan cepat Þ melalui kumparan primer koil pengapian Þ massa koil pengapian. Pada kumparan primer koil pengapian dihasilkan tegangan induksi sendiri sebesar 200 – 300 V.
Akhirnya pada kumparan sekunder koil pengapian akan timbul induksi tegangan tinggi sebesar ± 20 KVolt Þ disalurkan melalui kabel busi ke busi untuk diubah menjadi pijaran api listrik.




2.2    PEMERIKSAAN, PERAWATAN, DAN PENYETELAN SISTEM PENGAPIAN ELEKTRONIK (CDI) SEPEDA MOTOR

1)      Pemeriksaan alternator (kumparan pembangkit/stator dan magnet/rotor)
a)      Pemeriksaan tahanan kumparan pembangkit/stator Pemeriksaan dapat dilakukan dalam keadaan stator tetap terpasang. Pemeriksaan dilakukan melalui konektor terminal alternator (atau dapat pula pada konektor rectifier/regulator), dengan menggunakan Ohm Meter.








     Gambar 13. Posisi Kabel/Konektor Stator Alternator

Posisi pemeriksaan tahanan/kontinuitas kumparan stator alternator menggunakan Ohm Meter dapat dilihat pada gambar di bawah ini.













Gambar 14. Pemeriksaan Kumparan Stator Alternator
Tahanan kumparan stator alternator : 100 – 400 D (Honda)

b)      Pemeriksaan magnet/rotor secara visual (keretakan, kotoran, kondisi pasak/spie pada poros engkol).














     Gambar 15. Pemeriksaan Rotor Alternator

2)      Pemeriksaan dan perawatan baterai,
a)      Memeriksa jumlah cairan baterai. Permukaan cairan baterai harus berada di antara batas atas dan batas bawah. Apabila cairan baterai berkurang, tambahkan air suling sampai batas atas tinggi permukaan yang diperbolehkan.
b)      Memeriksa berat jenis cairan baterai. Berat jenis cairan baterai ideal adalah 1,260. Apabila kurang, maka baterai perlu diestrum (charged), sedangkan apabila berat jenis cairan baterai berlebihan maka tambahkan air suling sampai mencapai berat jenis ideal.
       Gambar 16. Perawatan Baterai

c)      Pemeriksaan pipa/slang ventilasi baterai. Perhatikan kerusakan pipa/slang ventilasi dari kebocoran, tersumbat maupun kesalahan letak/jalur pemasangannya.

3)      Pemeriksaan kunci kontak, memeriksa kerja dan hubungan antar terminal kontak menggunakan multi tester.















 Gambar 17. Pemeriksaan Kunci Kontak

4)      Pemeriksaan koil pengapian (Ignition Coil),
a)      Memeriksa tahanan kumparan primer dan kumparan sekunder.
1)      Tahanan kumparan primer = 0,5-1 Ω
2)      Tahanan kumparan sekunder (tanpa cap busi = 7,2-8,8 KΩ)
3)      Tahanan kump. sekunder (dengan cap busi = 11,5-14,5 KΩ)













   Gambar 18. Pemeriksaan Ignition Coil

b)      Memeriksa kabel tegangan tinggi busi dari retakretak/ kebocoran secara visual maupun dengan tes percikan. Pengapian yang baik: percikan lebih dari 6 mm











Gambar 19. Tes Percikan Api Pengapian
5)      Pemeriksaan unit CDI, dengan mengukur kontinuitas antar terminal-terminalnya menggunakan Ohm Meter.
Tabel . Pemeriksaan Hubungan Antar Terminal Unit CDI (KΩ)























  Gambar 20. Contoh Pemeriksaan Unit CDI

6)      Pemeriksaan kumparan pembangkit pulsa (pick up coil), dengan memeriksa tahanan kumparan menggunakan Ohm Meter. Tahanan pick up coil : 50 – 200 D (Honda).

7)      Pemeriksaan dan penyetelan busi,
a)      Memeriksa keausan elektroda busi. Apabila keausan elektroda berlebihan, busi perlu diganti.
b)      Memeriksa warna hasil pembakaran pada ujung insulator dan elektroda busi. Perhatikan pula kode busi yang digunakan, bandingkan dengan spesifikasi yang disarankan.

c)      Membersihkan insulator dan elektroda busi dari endapan karbon mempergunakan sikat kawat atau alat pembersih busi. Apabila insulator retak atau pecah, busi harus diganti.
d)     Menyetel celah elektroda busi. Celah spesifikasi : 0,6 – 0,7 mm.








        Gambar 22. Pembersihan dan Celah Elektroda Busi

8)   Pemeriksaan waktu pengapian
Pemeriksaan waktu pengapian merupakan kegiatan memeriksa ketepatan waktu (timing), saat piston mencapai batas pemampatan yang optimum dengan saat busi memijarkan bunga api listrik. Tujuannya adalah untuk meningkatkan tenaga mesin melalui proses pembakaran agar menghasilkan tenaga panas yang sempurna.
Pemeriksaan waktu pengapian dilakukan dalam keadaan mesin hidup, menggunakan timing light. Langkah-langkah pemeriksaan :
a)      Memasang timing light
b)      Mesin dihidupkan pada putaran stasioner (± 1.300 rpm). Arahkan timing light ke tanda penyesuai pada tutup magnet.











Gambar 23. Penggunaan Timing light

c)    Waktu pengapian tepat apabila terlihat “Garis-F” sejajar dengan tanda “Penyesuai”.








     Gambar 24. Waktu Pengapian Tepat

d)     Apabila “Garis-F” terlihat sebelum melewati “Penyesuai”, berarti pengapian terlalu cepat (Voor).
e)    Sebaliknya, Apabila “Garis-F” terlihat sesudah melewati “Penyesuai”, berarti pengapian terlalu lambat (Naa).








      Gambar 25. Waktu Pengapian Voor dan Naa

f)       Pada saat putaran tinggi, waktu pengapian tepat apabila terlihat “Penyesuai” di tengah tanda “Advance (//)”.








      Gambar 26. Waktu Pengapian Advance (//)

g)      Pada umumnya, waktu pengapian untuk sistem pengapian elektronik tidak dapat disetel karena konstruksi dudukan komponen (pick up coil dan reluctor, dsb) dibuat tetap. Apabila hasil pemeriksaan menunjukkan waktu pengapian tidak tepat, maka biasanya disebabkan adanya komponen system pengapian yang mengalami kerusakan/perubahan nilai tahanan/ tegangannya.
Tagged
Written by nuansa motor

Nuansa motor adalah suatu usaha yang bergerak dalam bidang otomotif yaitu perbengkelan, perdagangan dan Pelatihan Mekanik.

1 comment:

  1. Tanya pak, utk pengapian cdi ac, saya sudah cek komponen pulser, alternator,masa, koil, via kabel cop cdi semua normal, tapi tidak bisa keluar api di kabel koil, saya coba lepas kabel kontaknya jg tidak bisa, apa bisa dipastikan yg rusak cdinya, padahal motor baru beli (atv), mesin mocin

    ReplyDelete